ACCELERATED POLICY EVALUATION WITH ADAPTIVE IMPORTANCE SAMPLING ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Mengdi Xu¹, Peide Huang¹, Fengpei Li^{2,3}, Jiacheng Zhu¹, Xuewei Qi⁴, Kentaro Oguchi⁴, Zhiyuan Huang⁵, Henry Lam³, Ding Zhao¹ 1. Carnegie Mellon University 2. Columbia University 3. Morgan Stanley AI CoE 4. Toyota Motor North America R&D 5. Tongji University. Contact: mengdixu@andrew.cmu.edu

Motivation

How to evaluate a policy in the presence of rare events?

Rare events are important in safety-critical applications, such as medical treatments, marketing and finance, autonomous driving, and healthcare robotics.

[Stock Market Crash, Wiki] [Tesla Autopilot, 2019]

Existing Methods in estimating rare event-related probabilities in finite state-space Markov chains:

- cross-entropy methods [De Boer, 2001]
- adaptive Monte Carlo [Desai, 2001]
- adaptive importance sampling [Ahamed, 2006]

Limitations:

- Small discrete state and action spaces (limited scalability);
- Rely on discretization when continuous spaces (drops the environment or action structure information).

Algorithm

Algorithm 1 ASA for continuous state action space MDPs						
rare event prob. function approximator neural net (NN) or Gaussian process (GP)	Input: Evaluation policy π_A , Simulation environment E , Ground truth transition prob $\pi_E(a_E a_A, x)$, Horizon N, initial value function parameters ψ , value function learning rate α_J , initial NF parameters $\theta = \{\theta, \phi\}$, NF learning rate α_{π} Initialization: $n = 0$					
	Pretrain $\pi_{\nabla a}(\cdot a \wedge x)$ with target conditional probability					
	$\pi_E(\cdot a_A, x) \forall a_A \in A_A, x \in \mathcal{X}$					
	for $n = 0$ to $N - 1$ do					
Difference Importance	Reset environment					
Learning Sampling	repeat					
	Sample agent action $a_A \sim \pi_A(\cdot x)$					
	Sample env action $a_E \sim \pi_{E,\theta}(\cdot a_A, x)$					
env. importance policy	Execute a_A and a_E and observe cost g, next state x'					
conditional	Calculate importance weight ρ					
normalizing flow	Add data pair $d = (x, a_A, a_E, x', g, \rho)$ to buffer \mathcal{D}					
normalizing now	Update value function parameters ψ with gradient					
Iterative Updating Scheme	descent					
	Update transition target based on d					
	Train $\pi_{E,\theta}(\cdot a_A, x)$ with gradient descent					
Check the paper for more info!	$x \leftarrow x'$					
	$n \leftarrow n+1$					
until episode finish						
end for						

Method

An accelerated and scalable policy evaluation method suitable for Markov Decision Processes (MDPs) with large discrete or continuous state and action spaces.

Estimate expected costs till termination, $J^*(s) = \mathbb{E}_{x_0=s} \left| \sum_{i=1}^{\infty} g(x_n, x_{n+1}) \right|$ e.g., rare event probability.

the prob. of hitting rare termination set before hitting other termination sets. $g(x, y) = \mathbf{I}_{y \in R}$

Adaptive IS for discrete Markov chains [Ahamed, 2006]

$$\tilde{p}_{x_n x_{n+1}}^{n+1} = \max\left(\delta, \ p_{x_n x_{n+1}} \cdot \frac{g(x_n, x_{n+1}) + J^{(n)}(x_{n+1})}{J^{n+1}(x_{n+1})}\right)$$

Adaptive stochastic approximation for discrete MDPs

 Contribution 1: Extend to MDPs by treating environment nature as an agent with its policy as the importance distribution

$$p(x_{n+1}|a_{A,n}, x_n) = \pi_E(a_{E,n}|a_{A,n}, x_n)$$
$$x_{n+1} = f_E(x_n, a_{A,n}, a_{E,n})$$
$$a_{E,n} = f_E^{-1}(x_n, a_{A,n}, x_{n+1})$$

stochastic approximation

$$\frac{p_{x_n x_{n+1}}}{p_{x_n x_{n+1}}^{(n)}} = \frac{\sum_{a_A} \pi_A(a_A | x_n) p(x_{n+1} | a_A, x_n)}{\sum_{a_A} \pi_A^{(n)}(a_A | x_n) p^{(n)}(x_{n+1} | a_A, x_n)} \approx \frac{p(x_{n+1} | a_{A,n}, x_n)}{p^{(n)}(x_{n+1} | a_{A,n}, x_n)} = \frac{\pi_E(a_E | a_{A,n}, x_n)}{\pi_E^{(n)}(a_E | a_{A,n}, x_n)}$$

• Iterative update rule: Importance weight:
$$\rho_n$$

$$J^{(n+1)}(x_n) = J^{(n)}(x_n) + a \left[-J^{(n)}(x_n) + \left(g(x_n, x_{n+1}) + J^{(n)}(x_{n+1}) \right) \right] \cdot \frac{\pi_E(a_E | a_{A,n}, x_n)}{\pi_E^{(n)}(a_E | a_{A,n}, x_n)} \right]$$

$$\tilde{\pi}_E^{n+1}(a_E | a_{A,n}, x_n) = \max \left(\delta, \pi_E(a_E | a_{A,n}, x_n) \left(\frac{g(x_n, x_{n+1}) + J^{n+1}(x_{n+1})}{J^{n+1}(x_n)} \right) \right)$$

Adaptive stochastic approximation for continuous MDPs

- Contribution 2: Integrate adaptive IS with function approximations
- value function approx.: GP or NN; batch gradient descent (GD)

$$J_{\psi}(x_n) = \mathbb{E}_{\pi_{E,\theta}^{(n)}} \left[(g(x_n, x_{n+1}) + J_{\psi}(x_{n+1})) \cdot \rho_n \right]$$

TD target:
$$J_{\psi,TD}(x_n) = (g(x_n, x_{n+1}) + J_{\psi}(x_{n+1})) \cdot \rho_n$$

• importance policy approx.: cMAF [Papamakarios, 2018]; GD

$$\pi_E(a_{E,n}|C_n) = \pi_E(a_{E,n}|C_n) \left(\frac{g + J_{\psi}(x_{n+1})}{J_{\psi}(x_n)}\right)$$

Importance policy

target density:
$$p_E(a_E|C_n) = \gamma(\pi_{E,\theta}(a_E|C_n) + \beta \cdot \mathcal{N}(a_{E,n},\sigma))$$

with
$$\beta = \sqrt{2\pi} \sigma(\tilde{\pi}_E(a_{E,n}|C_n) - \pi_{E,\theta}(a_{E,n}|C_n)), \gamma = 1/(1+\beta)$$

•	0
•	0
nc	orm
	\vdash

Experiments

Validation of Our MDP Evaluation Scheme

ours requires an order of magnitude fewer data than MC. ours has a smaller variance than MC.

nal event	rare event	methods	MC		ours	
		metric (×1e3)	mean	std	mean	std
	$J(x_1)$	3.99	0.38	3.90	0.24	
	$J(x_2)$	3.93	0.47	3.94	0.23	
		$J(x_3)$	4.00	0.50	3.94	0.17
		#transitions	78300	10600	8884	2595
		#episodes	19306	2612	552	134
get to the green goal square step: 15		95% CI	n = 15		n = 6	
197						

Performance of Function Approximation

• In intersection-v0, ours is more stable than discretization.

• In intersection-v1, ours has smaller variance than MC.

indicating better performance with smaller rare prob.

• Ours samples more rare events \rightarrow closer to zero-variance dist...

GP as J function approximator; rare event defined as crash.

	methods	Intersection-v0	Intersection-v1
	MC	0.06	0.001
nv. agent eval. agent	ASA_discrete	0.12 (2 times)	Х
	ASA (ours)	0.44 (7.5 times)	0.09 (90 times)

[highway-env, 2018]

Sampled rare event probability

